
Improving Generative LLMs:
Cognitive Architectures and RAG

DL4DS – Spring 2025

DS542 Gardos – Understanding Deep Learning, Other Content Cited 1

https://udlbook.github.io/udlbook/

Topics

• Generative LLM flow and how to evaluate

• Improve LLM performance by prompting strategies

• Improving with retrieval augmentation

• Building more complex systems with LLMs: ”Cognitive Architectures”

2

Topics

• Generative LLM flow and how to evaluate

• Improve LLM performance by prompting strategies

• Improving with retrieval augmentation

• Building more complex systems with LLMs: ”Cognitive Architectures”

3

LLM Generative Flow

4

Token
Encoding &

Linear
Embedding

Token
Decoding

Transformer
Token

Selection

Query Response

LLM Generative Flow

• How do we evaluate the response?

• How do we improve the response?

5

Token
Encoding &

Linear
Embedding

Token
Decoding

Transformer
Token

Selection

Query Response

Generative LLM Evaluations

Evaluate for

• Accuracy (is it factual or hallucinated?)

• Relevance (is it answering the question?)

• Bias, Toxicity (Is it fair? Or even worse is it racist or toxic?)

• Diversity of Response (does it always give same response? or equally
useful diverse responses?)

6

Ways to Evaluate

• Find a benchmark that matches your task
• HellaSwag (which evaluates how well an LLM can complete a sentence),
• TruthfulQA (measuring truthfulness of model responses), and
• MMLU (which measures how well the LLM can multitask),
• WinoGrande (commonsense reasoning),
• GSM8K, (arithmetic reasoning), etc.

• Evaluate with a metric, e.g. BLEU, METEOR, ROUGE, CIDEr, SPICE, etc.
• Pros and Cons of each metric

• Create your own evaluation prompt/response pairs –
• need thousands!

• Build an LLM to evaluate your LLM!

7
See: https://arize.com/blog-course/llm-evaluation-the-definitive-guide/ for a nice overview

https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2009.03300
https://winogrande.allenai.org/
https://github.com/dvlab-research/MR-GSM8K
http://www.mt-archive.info/00/IBM-2001-Papineni.pdf
https://www.cs.cmu.edu/~alavie/METEOR/pdf/meteor-1.5.pdf
https://www.aclweb.org/anthology/W04-1013.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vedantam_CIDEr_Consensus-Based_Image_2015_CVPR_paper.pdf
https://arxiv.org/pdf/1607.08822.pdf
https://arize.com/blog-course/llm-evaluation-the-definitive-guide/

Model vs System Evals

8
See: https://arize.com/blog-course/llm-evaluation-the-definitive-guide/ for a nice overview

Useful for choosing a model or deciding when
to switch.

Useful for prompt tuning and monitoring over time.

https://arize.com/blog-course/llm-evaluation-the-definitive-guide/

9https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Open LLM Leaderboard

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Crowd-Sourcing Evaluations
User Feedback

10

https://lmsys.org/

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

https://lmsys.org/
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

Topics

• Generative LLM flow and how to evaluate

• Improve LLM performance by prompting strategies

• Improving with retrieval augmentation

• Building more complex systems with LLMs: ”Cognitive Architectures”

11

12

https://karpathy.ai/stateofgpt.pdf

https://karpathy.ai/stateofgpt.pdf

13https://karpathy.ai/stateofgpt.pdf

https://karpathy.ai/stateofgpt.pdf

14

https://karpathy.ai/stateofgpt.pdf

https://karpathy.ai/stateofgpt.pdf

Chain of Thought Prompting (few shot)
CoT enhances the reasoning abilities of LLMs by generating intermediate reasoning steps before arriving at a final

answer

● Enables models to break down
complex, multi-step problems into
clearer, intermediate steps

● Offers a clear view into the model's
thought process, highlighting areas for
debugging and improvement.

● Suitable for a broad range of reasoning
tasks including math, commonsense,
and symbolic reasoning

● Easily activated in LLMs with simple
prompts, leveraging existing
capabilities without customization.

J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models.” arXiv, Jan. 10, 2023. doi:
10.48550/arXiv.2201.11903.

https://doi.org/10.48550/arXiv.2201.11903

Chain of Thought Prompting (zero shot)
• LLMs are decent zero-shot reasoners by simply adding “Let’s think

step by step” before each answer

T. Kojima, S. (Shane) Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large Language Models are Zero-Shot
Reasoners,” Advances in Neural Information Processing Systems, vol. 35, pp. 22199–22213, Dec. 2022. (link)

https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html

17

https://karpathy.ai/stateofgpt.pdf

https://karpathy.ai/stateofgpt.pdf

Tree of Thought

• ToT allows LMs to perform deliberate decision making
by considering multiple different reasoning paths and
self-evaluating choices to decide the next course of
action, as well as looking ahead or backtracking when
necessary to make global choices.

• Our experiments show that ToT significantly enhances
language models’ problem-solving abilities on three
novel tasks requiring non-trivial planning or search

18

S. Yao et al., “Tree of Thoughts: Deliberate Problem Solving with Large Language Models,” Advances in Neural Information Processing Systems, vol.
36, pp. 11809–11822, Dec. 2023.

These techniques can improve LLM
response generation, but how do we
tailor to specific knowledge bases?

19

Topics

• Generative LLM flow and how to evaluate

• Improve LLM performance by prompting strategies

• Improving with retrieval augmentation

• Building more complex systems with LLMs: ”Cognitive Architectures”

20

Retrieval-Augmented Generation (RAG)
RAG enhances LLMs by referencing external knowledge to generate relevant
responses.

• Integrates external data into LLM text generation.

• Reduces hallucination, improves response relevance.

• Works with
• Unstructured data (e.g. documents)

• Structured data (e.g. SQL data)

• Code (e.g. python)

RAG Architecture

Typical RAG application has two main components:

• Loading and Indexing:
• A pipeline for ingesting data from a source and indexing it

• Usually happens offline

• Retrieval and Generation:
• Takes user query at run time and retrieves relevant data from the index and

passes it to the model

22

https://python.langchain.com/docs/use_cases/question_answering/

https://python.langchain.com/docs/use_cases/question_answering/

RAG – Loading and Indexing

23

https://python.langchain.com/docs/use_cases/question_answering/

https://python.langchain.com/docs/use_cases/question_answering/

RAG – Load
Load the data, e.g.

• PDFs

• HTML

• Plain text

• Images, video, audio

• Structured data (SQL, CSV/TSV, …)

• JSON

• URLs

• …

24https://python.langchain.com/docs/use_cases/question_answering/

See for example: https://python.langchain.com/docs/modules/data_connection/document_loaders/

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/document_loaders/

RAG – Split
Break large documents into
smaller chunks.

Easier to:

• index

• pass to model

• search

• fit into model’s context window

25https://python.langchain.com/docs/use_cases/question_answering/

See for example: https://python.langchain.com/docs/modules/data_connection/document_transformers/

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/document_transformers/

RAG – Embed
• Encode (e.g. with Byte Pair

Encoding) and

• Transform to embedding vectors
with the learned embedding
model.

26https://python.langchain.com/docs/use_cases/question_answering/

See for example: https://python.langchain.com/docs/modules/data_connection/text_embedding/

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/text_embedding/

RAG – Store
• Store the data in some kind of Vector Store

• e.g. Chroma, FAISS, Lance, Pinecone, etc…

27https://python.langchain.com/docs/use_cases/question_answering/

See for example: https://python.langchain.com/docs/modules/data_connection/vectorstores/

https://python.langchain.com/docs/use_cases/question_answering/
https://python.langchain.com/docs/modules/data_connection/vectorstores/

RAG – Retrieval and Generation

28https://python.langchain.com/docs/use_cases/question_answering/

https://python.langchain.com/docs/use_cases/question_answering/

RAG – Retrieval

29https://python.langchain.com/docs/modules/data_connection/vectorstores/

https://python.langchain.com/docs/modules/data_connection/vectorstores/

RAG – Retrieval Similarity Measure

30

L2 Norm*: 𝑑 = σ𝑖 𝐴𝑖 − 𝐵𝑖
2

Inner Product: 𝑑 = 1 − σ𝑖(𝐴𝑖 × 𝐵𝑖)

Cosine Similarity: 1 −
σ𝑖(𝐴𝑖×𝐵𝑖)

σ𝑖 𝐴𝑖
2 σ𝑖(𝐵𝑖

2

https://docs.trychroma.com/usage-guide#changing-the-distance-function

* Default on Chroma Vector Database

https://docs.trychroma.com/usage-guide

Is simple similarity measure
between query and document
the best approach?

31

RAG – Other Query-Document Matching Approaches
1. BERT and Variants for Query-Document Matching

BERT:
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805. This foundational paper introduces BERT and its methodology for language understanding, which has been widely applied to
information retrieval tasks.

Application in Information Retrieval:
Nogueira, R., & Cho, K. (2019). Passage Re-ranking with BERT. arXiv:1901.04085. This work explores how BERT can be used for re-ranking search results,
demonstrating its effectiveness in improving information retrieval systems. https://arxiv.org/abs/1901.04085

2. Fine-tuning for Specific Tasks
Fine-Tuning BERT for Search:

MacAvaney, S., Cohan, A., & Goharian, N. (2019). CEDR: Contextualized Embeddings for Document Ranking. SIGIR. This paper discusses fine-tuning BERT
with contextual embeddings specifically for document ranking, providing insights into adapting Transformer models for search tasks.
https://dl.acm.org/doi/abs/10.1145/3331184.3331317

3. Dual-encoder and Cross-encoder Architectures
Dual-Encoders for Efficient Retrieval:

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih, W. (2020). Dense Passage Retrieval for Open-Domain Question Answering.
EMNLP. This paper introduces a method using dense vector representations for passages and questions to improve open-domain question answering.
https://arxiv.org/abs/2004.04906

Cross-Encoders for Detailed Similarity Scoring:
Humeau, S., Shuster, K., Lachaux, M. A., & Weston, J. (2019). Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate
Multi-sentence Scoring. arXiv:1905.01969. The poly-encoder architecture introduced here incorporates aspects of both dual and cross-encoders,
offering a balance between speed and accuracy for matching tasks. https://arxiv.org/abs/1905.01969

4. Semantic Search Systems
Semantic Search with Transformers:

Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., Wu, C., Croft, W. B., & Cheng, X. (2020). A Deep Look into Neural Ranking Models for Information
Retrieval. Information Processing & Management. This review covers deep learning approaches to information retrieval, including the use of
Transformer models for understanding query intent and document relevance in a semantic search context.
https://www.sciencedirect.com/science/article/pii/S0306457319302390

32

https://arxiv.org/abs/1901.04085
https://dl.acm.org/doi/abs/10.1145/3331184.3331317
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/1905.01969
https://www.sciencedirect.com/science/article/pii/S0306457319302390

Evaluating RAG-based LLMs

33
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

Evaluating RAG: Context Relevance

• Is the content retrieved from the vector
database relevant to the query?

• Irrelevant information will be likely
integrated into the response, contributing
to hallucinations

34
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

Evaluating RAG: Groundedness

• The context was provided to the LLM as
part of the prompt

• Did the LLM response incorporate the
context appropriately?

• Can we support each claim in the
response from the context?

35
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

Evaluating RAG: Answer Relevance

• Is the answer relevant to the original
question?

• Prompt is augmented with context.

• Did the context cause the LLM to stray
away from the question?

36
https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

https://www.trulens.org/trulens_eval/getting_started/core_concepts/rag_triad/

Growing ecosystem of
tools to do evaluation

37

Retrieval-Augmented Generation (RAG)
RAG systems have evolved from Naive RAG to Advanced RAG and Modular RAG. This evolution
has occurred to address certain limitations around performance, cost, and efficiency.

Image source (Kojima et al., 2022)

https://www.promptingguide.ai/research/rag

Pre-Retrieval Improvements
• Enhance indexed data quality, optimize chunk size and

overlap.
• Rewrite user queries for better match in vector database.
• Use metadata and pronoun replacement to maintain context

in chunks.

Retrieval Enhancements
• Explore alternative search methods (e.g., full-text, graph-

based).
• Experiment with different embedding models for task

suitability.
• Implement hierarchical and recursive search for precision.

Post-Retrieval Optimization
• Re-rank or score chunks for relevance; compress information

from multiple chunks.
• Employ smaller, faster models for specific steps to reduce

latency.
• Parallelize intermediate steps and use caching for common

queries.

Balancing Quality and Latency
• Opt for parallel processing, smaller models, and caching

strategies.
• Tailor RAG approach based on the complexity of user

queries and the nature of tasks.

https://arxiv.org/abs/2205.11916
https://www.promptingguide.ai/research/rag

Topics

• Generative LLM flow and how to evaluate

• Improve LLM performance by prompting strategies

• Improving with retrieval augmentation

• Building more complex systems with LLMs: ”Cognitive Architectures”

39

Cognitive Architecture*

• Orchestration of components of an LLM application

• There are two main components here:
• (1) how is context provided to the application,

• (2) how does the application “reason”. Both of these components make up
the cognitive architecture of an application.

40

https://blog.langchain.dev/openais-bet-on-a-cognitive-architecture/

*Perhaps coined by Flo Crivello, creator of Lindy (no code customized AI assistants).

https://blog.langchain.dev/openais-bet-on-a-cognitive-architecture/
https://flocrivello.com/
https://www.lindy.ai/

Hierarchy of Cognitive Architectures

41

Single LLM call

Chain of LLM calls

Use LLMs as a router to choose
action

State machine with state
transitions managed by LLM

Agents -- Actions taken on
behalf of user by LLMs

Coordinator Vector Databases

CogArch SW Stack & Ecosystem

42

UI & App Frameworks

Coordinators and API Wrappers

AssistantG
P

T

Model APIs

APIs

GPT
Store

Hosted Models Hosted Models

Model APIs

Server Infrastructure/Hosting

43https://karpathy.ai/stateofgpt.pdf

https://karpathy.ai/stateofgpt.pdf

LLMs Chains & Agents

44
https://github.com/assafelovic/gpt-researcher

https://karpathy.ai/stateofgpt.pdf

https://github.com/assafelovic/gpt-researcher
https://karpathy.ai/stateofgpt.pdf

sweep.dev
cognitive
architecture

45
https://docs.sweep.dev/blogs/sweeps-core-algo

https://docs.sweep.dev/blogs/sweeps-core-algo

46
https://www.latent.space/p/agents

https://www.hopkinsmedicine.org/health/condition
s-and-diseases/anatomy-of-the-brain

An ecosystem view

https://www.latent.space/p/agents
https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-of-the-brain
https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-of-the-brain

Cognitive Architectures for Language Agents
• “draw on rich history of cognitive science and symbolic artificial intelligence…”

• CoALA: Cognitive Architectures for Language Agents

47T. R. Sumers, S. Yao, K. Narasimhan, and T. L. Griffiths, “Cognitive Architectures for Language Agents.” arXiv, Mar. 15, 2024. doi: 10.48550/arXiv.2309.02427.

A: In natural language processing (NLP), an LLM
takes text as input and outputs text.

B: Language agents place the LLM in a direct
feedback loop with the external environment by
transforming observations into text and using the
LLM to choose actions.

C: Cognitive language agents additionally use the
LLM to manage the agent’s internal state via
processes such as learning and reasoning.

https://doi.org/10.48550/arXiv.2309.02427

Theories of Intelligence

48

The Society of Mind is both the title of a 1986 book and

the name of a theory of natural intelligence as written and

developed by Marvin Minsky.[1]

In his book of the same name, Minsky constructs a model
of human intelligence step by step, built up from the

interactions of simple parts called agents, which are

themselves mindless. He describes the

postulated interactions as constituting a "society of mind",

hence the title.[2]

https://en.wikipedia.org/wiki/Society_of_Mind

https://web.media.mit.edu/~minsky/papers/ConfocalMemoir.html
https://patents.google.com/patent/US3013467A/en

https://en.wikipedia.org/wiki/Intelligence_(trait)
https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/Society_of_Mind
https://en.wiktionary.org/wiki/agent
https://en.wiktionary.org/wiki/interaction
https://en.wikipedia.org/wiki/Society_of_Mind
https://en.wikipedia.org/wiki/Society_of_Mind
https://web.media.mit.edu/~minsky/papers/ConfocalMemoir.html
https://patents.google.com/patent/US3013467A/en

Next Time
• LLM Finetuning

• back to book sequence on
• unsupervised learning

• GANs

• VAEs

• Diffusion Models

49ChatGPT

Link

https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

	Default Section
	Slide 1: Improving Generative LLMs: Cognitive Architectures and RAG
	Slide 2: Topics
	Slide 3: Topics
	Slide 4: LLM Generative Flow
	Slide 5: LLM Generative Flow
	Slide 6: Generative LLM Evaluations
	Slide 7: Ways to Evaluate
	Slide 8: Model vs System Evals
	Slide 9: Open LLM Leaderboard
	Slide 10: Crowd-Sourcing Evaluations User Feedback

	Advanced Prompting/Retrieval
	Slide 11: Topics
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Chain of Thought Prompting (few shot)
	Slide 16: Chain of Thought Prompting (zero shot)
	Slide 17
	Slide 18: Tree of Thought
	Slide 19: These techniques can improve LLM response generation, but how do we tailor to specific knowledge bases?

	RAG
	Slide 20: Topics
	Slide 21: Retrieval-Augmented Generation (RAG)
	Slide 22: RAG Architecture
	Slide 23: RAG – Loading and Indexing
	Slide 24: RAG – Load
	Slide 25: RAG – Split
	Slide 26: RAG – Embed
	Slide 27: RAG – Store
	Slide 28: RAG – Retrieval and Generation
	Slide 29: RAG – Retrieval
	Slide 30: RAG – Retrieval Similarity Measure
	Slide 31: Is simple similarity measure between query and document the best approach?
	Slide 32: RAG – Other Query-Document Matching Approaches
	Slide 33: Evaluating RAG-based LLMs
	Slide 34: Evaluating RAG: Context Relevance
	Slide 35: Evaluating RAG: Groundedness
	Slide 36: Evaluating RAG: Answer Relevance
	Slide 37: Growing ecosystem of tools to do evaluation
	Slide 38: Retrieval-Augmented Generation (RAG)

	Cognitive Architecture
	Slide 39: Topics
	Slide 40: Cognitive Architecture*
	Slide 41: Hierarchy of Cognitive Architectures
	Slide 42: CogArch SW Stack & Ecosystem
	Slide 43
	Slide 44: LLMs Chains & Agents
	Slide 45: sweep.dev cognitive architecture
	Slide 46
	Slide 47: Cognitive Architectures for Language Agents
	Slide 48: Theories of Intelligence
	Slide 49: Next Time

